Once again a bunch of 23rd USE Informatics problems might be solved via 08/2016 technique rather then bits chains way
Original Source
(x1 v x2)^(¬x1 v ¬x2)^(x1 v y1)=1
(x2 v x3)^(¬x2 v ¬x3)^(x2 v y2)=1
(x3 v x4)^(¬x3 v ¬x4)^(x3 v y3)=1
(x4 v x5)^(¬x4 v ¬x5)^(x4 v y4)=1
(x5 v x6)^(¬x5 v ¬x6)^(x5 v y5)=1
(x6 v x7)^(¬x6 v ¬x7)^(x6 v y6)=1
(x7 v y7)=1
Good knowledge of Algebra of Logic is required pretty often to simplify original system to the one which is obviously good for 08/2016 treatment.
Convert to equivalent due to (x1 v x2)^(¬x1 v ¬x2) = (x1^¬x2)v(x2^¬x1)=x1⊕x2
(x1⊕x2)^(x1 v y1)=1
(x2⊕x3)^(x2 v y2)=1
(x3⊕x4)^(x3 v y3)=1
(x4⊕x5)^(x4 v y4)=1
(x5⊕x6)^(x5 v y5)=1
(x6⊕x7)^(x6 v y6)=1
(x7 v y7)=1
Fork 08/2016 chart
Original Source
(x1 v x2)^(¬x1 v ¬x2)^(x1 v y1)=1
(x2 v x3)^(¬x2 v ¬x3)^(x2 v y2)=1
(x3 v x4)^(¬x3 v ¬x4)^(x3 v y3)=1
(x4 v x5)^(¬x4 v ¬x5)^(x4 v y4)=1
(x5 v x6)^(¬x5 v ¬x6)^(x5 v y5)=1
(x6 v x7)^(¬x6 v ¬x7)^(x6 v y6)=1
(x7 v y7)=1
Good knowledge of Algebra of Logic is required pretty often to simplify original system to the one which is obviously good for 08/2016 treatment.
Convert to equivalent due to (x1 v x2)^(¬x1 v ¬x2) = (x1^¬x2)v(x2^¬x1)=x1⊕x2
(x1⊕x2)^(x1 v y1)=1
(x2⊕x3)^(x2 v y2)=1
(x3⊕x4)^(x3 v y3)=1
(x4⊕x5)^(x4 v y4)=1
(x5⊕x6)^(x5 v y5)=1
(x6⊕x7)^(x6 v y6)=1
(x7 v y7)=1
Fork 08/2016 chart
No comments:
Post a Comment