Thursday 24 October 2019

Style 08.2016 on the go (Solving systems of Boolen Equations for USE Informatics)

Original system


(x1=>y1)^(x1 v x2)^¬(x1^x2)=1
(x2=>y2)^(x2 v x3)^¬(x2^x3)=1
(x3=>y3)^(x3 v x4)^¬(x3^x4)=1
(x4=>y4)^(x4 v x5)^¬(x4^x5)=1
(x5=>y5)^(x5 v x6)^¬(x5^x6)=1
(x6=>y6)^(x6 v x7)^¬(x6^x7)=1
(x7=>y7)=1

Notice first ( due to De Morgan rules ) :-

(x1 v x2)^¬(x1^x2)=(x1 v x2)^(¬x1 v ¬x2)=
=x1^¬x2 v x2^¬x1 = x1⊕x2

Convert to equivalent

(x1=>y1)^(x1⊕x2)=1
(x2=>y2)^(x2⊕x3)=1
(x3=>y3)^(x3⊕x4)=1
(x4=>y4)^(x4⊕x5)=1
(x5=>y5)^(x5⊕x6)=1
(x6=>y6)^(x6⊕x7)=1
(x7=>y7)=1

Fork 08.2016 chart to solve the system


Monday 21 October 2019

Solution of one USE Informatics system of Boolean equations in 08.2016 style

Original system


Orinal system
¬(x1≡x2)v¬(x1≡x3)^(x2≡x3)=1
¬(x3≡x4)v¬(x3≡x5)^(x4≡x5)=1
¬(x5≡x6)v¬(x5≡x7)^(x6≡x7)=1
¬(x7≡x8)v¬(x7≡x9)^(x8≡x9)=1

Convert to equivalent
  (x1≡x2) => (x1⊕x3)^(x2≡x3) =1
  (x3≡x4) => (x3⊕x5)^(x4≡x5) =1
  (x5≡x6) => (x5⊕x7)^(x6≡x7) =1
  (x7≡x8) => (x7⊕x9)^(x8≡x9) =1

   Here we have transition variables x3,x5,x7 rather then transition pairs
   between equations. Thus we would manage via 08.2016 charts.
  

Consider a bit more complex sample of similar system

((x1≡x2)≡x3)=>(x1⊕x4)^((x2≡x3)≡x4)=1
((x4≡x5)≡x6)=>(x4⊕x7)^((x5≡x6)≡x7)=1
((x7≡x8)≡x9)=>(x7⊕x10)^((x8≡x9)≡x10)=1

Transition variables are x4 and x7. Fork 08.2016 chart for this system



The solution of one well-known problem from the USE Informatics forum in the format 08.2016 (Russian Federation)

Original wording in Helen Mironchikc's group

https://vk.com/club180658320?w=wall-180658320_64%2Fall



The first pass looks for the total number of solutions of the system, the second pass considers the number of false decisions. Answer: 448 - 32 = 416


Saturday 19 October 2019

Разбор СтатГрад 23.09.2019 Информатика ЕГЭ №23 vs решение в стиле 08.2016 той же задачи 23

Оригинальное решение

https://www.youtube.com/watch?time_continue=4&v=_Hf22YG3uU0

Разобрали по СтатГраду ответ 81 ( титанические усилия завершаются с ошибкой - "1" по строке "01" должна быть удалена так как y8=>x8=1 )

Решение в стиле 08.2016 ( с правильным ответом при этом еще и предоставляет foolproof by default )

(x1=>x2)^(y2=>y1)=1
(x2=>x3)^(y3=>y2)=1
(x3=>x4)^(y4=>y3)=1
(x4=>x5)^(y5=>y4)=1
(x5=>x6)^(y6=>y5)=1
(x6=>x7)^(y7=>y6)=1
(x7=>x8)^(y8=>y7)=1
(y8=>x8)=1


  

Thursday 17 October 2019

Algebra of predicates {D(k)} (Helen Mironchick ) versus Advanced Implication usage by Natalya Konina regarding problem 132 from ege18.doc

Original task

Solution bellow differs from the original one proposed by Helen Mironchick
to address question of Anastasia Stepanenko, however it is still based on algebra of {D(k)} ( see [1] ) .

Solution itself

D(A) v ¬D(24)^¬D(36) ≡1
D(24)≡ D(2^3)^D(3)
D(36)≡ D(3^2)^D(2^2)

¬D(24)^¬D(36)≡(¬D(2^3) v ¬D(3))^(¬D(3^2) v ¬D(2^2))≡
¬D(2^3)^¬D(3^2) v ¬D(2^3)^¬D(2^2) v ¬D(3)^¬D(3^2) v ¬D(3)^¬D(2^2)

Due to
¬D(3)^¬D(3^2)≡ ¬D(3)
¬D(2^3)^¬D(2^2)≡ ¬D(2^2)

Getting
¬D(2^3)^¬D(3^2) v ¬D(2^2) v ¬D(3) v ¬D(3)^¬D(2^2)≡ ¬D(2^3)^¬D(3^2) v ¬D(2^2) v ¬D(3)
because  ¬D(3) absorbs ¬D(3)^¬D(2^2)

Per De Morgan rules

¬D(2^3)^¬D(3^2) v ¬D(2^2) v ¬D(3)≡ ¬(D(2^3)vD(3^2) v ¬(D(2^2)^D(3))
¬(D(2^3)vD(3^2) v ¬(D(2^2)^D(3))≡ ¬(D(8) v D(9)) v ¬D(12)

Finally we obtain
D(А) v ¬(D(8) v D(9)) v ¬D(12) ≡1
Hence  A(min)=12

You might want to compare it with solution provided in
http://kpolyakov.spb.ru/download/ege18del.pdf 
for the task 132

References
1. E.A. Mironchick ALGEBRA OF PREDICATES AND RELATED GEOMETRIC MODELS CREATION IN REGARDS OF UNIFIED STATE EXAM IN INFORMATICS (RUSSIAN EGE) , Informatics in school #3 2019

Wednesday 16 October 2019

Решение задачи №132 из ege18.doc в Алгебре Предикатов {D(k)}

Условие

Алгебрa Предикатов {D(k)} определена в [1].

Решение

D(A) v ¬D(24)^¬D(36) ≡1
D(24)≡ D(2^3)^D(3)
D(36)≡ D(3^2)^D(2^2)

¬D(24)^¬D(36)≡(¬D(2^3) v ¬D(3))^(¬D(3^2) v ¬D(2^2))≡
¬D(2^3)^¬D(3^2) v ¬D(2^3)^¬D(2^2) v ¬D(3)^¬D(3^2) v ¬D(3)^¬D(2^2)

Так как
¬D(3)^¬D(3^2)≡ ¬D(3)
¬D(2^3)^¬D(2^2)≡ ¬D(2^2)

Получаем :-
¬D(2^3)^¬D(3^2) v ¬D(2^2) v ¬D(3) v ¬D(3)^¬D(2^2)≡ ¬D(2^3)^¬D(3^2) v ¬D(2^2) v ¬D(3)
поскольку  ¬D(3) поглощает ¬D(3)^¬D(2^2)

Два последних слагаемых сворачиваем по де Моргану
¬D(2^3)^¬D(3^2) v ¬D(2^2) v ¬D(3)≡ ¬(D(2^3)vD(3^2) v ¬(D(2^2)^D(3))
¬(D(2^3)vD(3^2) v ¬(D(2^2)^D(3))≡ ¬(D(8) v D(9)) v ¬D(12)

Окончательно имеем
D(А) v ¬(D(8) v D(9)) v ¬D(12) ≡1
Откуда  A(min)=12

Ссылки
1. Елена А. Мирончик АЛГЕБРА  ПРЕДИКАТОВ
И  ПОСТРОЕНИЕ  ГЕОМЕТРИЧЕСКИХ  МОДЕЛЕЙ
НА  ЕГЭ  ПО  ИНФОРМАТИКЕ , ИВШ №3 2019

Monday 14 October 2019

Решение одной задачи на побитную конъюнкцию в Алгебре Предикатов {E(k)}

Алгебра Предикатов {E(k}} определена в http://kpolyakov.spb.ru/download/mea18bit.pdf

Пусть {N(j)} j=1,2,...,m - конечное множество натуральных чисел.
Найти наименьшее А при котором имеет место следующее тождество
(E(N(1) =>(E(N(2) =>(E(N(3 )=> . . . .=>(E(N(m)) =>E(A)) . . . . ))) ≡1

Решение.

Преобразуем исходное выражение к виду:-
 m
 v (¬E(N(j) ) v E(A) ≡ 1
j=1
    m
¬( ^ E(N(j) ) v E(A) ≡ 1
   j=1
  m
( ^ E(N(j) ) => E(A) ≡ 1
 j=1

Эквивалентно
                     m
¬E(A) => ¬( ^ E(N(j) ) ≡ 1
                    j=1
Далее
                  m
¬E(A) => ( v ¬E(N(j) ) ≡ 1
                 j=1
В силу дистрибутивности импликации
по отношению к дизъюнкции :-
  m
  v (¬E(A) => ¬E(N(j) ) ≡ 1
 j=1

Эквивалентно
  m
  v ( E(N(j) => E(A) ) ≡ 1
 j=1


По теореме 1 в https://mapping-metod.blogspot.com/2019/02/2017-versus-bitwise2-1-2.html
получаем A(min)  =  min{N(j)}
                              j=1,2,..,m

Если нет ни одного N(j) все биты которого входят в А то последняя дизъюнкция не может быть равна тождественно 1 , так как каждое слагаемое дает бит, не входящий в А, строим двоичное число z0 , содержащие все эти биты (наличие совпадающих только упрощает ситуацию)
Тогда
  m
( v (E(N(j) => E(A))(z0) = 0
 j=1

то есть если А < A(min), то каждое N(j) имеет такой бит и найденное А(min) действительно минимально.
Следствие
Любая задача вида Е(M)=>(E(N)=>E(A)) ≡ 1 тривиальна  A=min{M,N}
Например



                                                                               

Sunday 13 October 2019

Predicates truth and false sets regarding solving problems 23 USE Informatics VK's News Wire

Original source



Intentionally consider more complicated system

(((x1∧y1)) ≡ (x2∧y2)) => (x3∧y3))=1
(((x2∧y2)) ∨ ¬(x3∧y3)) => (x4∧y4))=1
(((x3∧y3)) ≡ (x4∧y4)) => (x5∧y5))=1
(((x4∧y4)) ∨ ¬(x5∧y5)) => (x6∧y6))=1 

Introduce predicate z(x,y)= (x^y).
Power of false set is equal 3.
Power of truth set is equal 1.
Would you replace z(x,y)  with w(x,y)=(xVy).
Power of false set is equal 1.
Power of truth set is equal 3.
The general approach will stay the same - outgoing
numbers and initial values would be updated correspondingly,
but arrows charts would stay the same

Denote zj=xj^xj
Convert system into zj variables
(1)
(z1≡z2) => z3 =1
(z2∨¬z3) => z4 =1
(z3≡z4) => z5=1
(z4∨¬z5) => z6 =1

(2)
(z1≡z2) => z3 =1
(z3 => z2) => z4 =1
(z3≡z4) => z5=1
(z5 => z4) => z6 =1


Consider system

(((x1Vy1)) ≡ (x2Vy2)) => (x3Vy3))=1
(((x2Vy2)) ∨ ¬(x3Vy3)) => (x4Vy4))=1
(((x3Vy3)) ≡ (x4Vy4)) => (x5Vy5))=1
(((x4Vy4)) ∨ ¬(x5Vy5)) => (x6Vy6))=1

Denote wj=(xjVyj) . Notice that arrows charts are exactly the same.
Initial values and outgoing numbers has been updated due to different powers
of truth and false sets of predicate w(x,y)=(xVy), 3 and 1 correspondingly

(w1≡w2) => w3 =1
(w3 => w2) => w4 =1
(w3≡w4) => w5=1
(w5 => w4) => w6 =1




Saturday 12 October 2019

Solution via decomposition into basic predicates several problems 18-th currently posted to Informatics_100 News Wire


Solution via decomposition into basic predicates
E(77)=E(64) v E(8) v E(4) v E(1) ;
E(12)=E(8) v E(4)
Now original equation has been converted per De Morgan rules:-
¬E(77) v E(12) v E(A) ≡ 1;
¬E(64)^¬E(8)^¬E(4)^¬E(1) v E(8) v E(4) v E(A) ≡ 1
Suppress E(8) and E(4) in conjunction
¬E(64)^¬E(1) v E(12) v E(A) ≡ 1 ;
¬E(65) v E(12) v E(A) ≡ 1
Hence A(min) = 65


¬E(33)=>(E(45)=>E(A)) ≡ 1
E(33) v ¬E(45) v E(A) ≡ 1
E(33)=E(32) v E(1) ;
E(45)=E(32) v E(8) v E(4) v E(1)
E(32) v E(1) v ¬E(32)^¬E(8)^¬E(4)^¬E(1) v E(A) ≡ 1
Suppress E(32) and E(1) in conjunction
E(32) v E(1) v ¬E(8)^¬E(4) v E(A) ≡ 1;
E(33) v ¬(E(8) v E(4)) v E(A) ≡ 1
E(33) v ¬E(12) v E(A) ≡ 1
Hence
A(min)=12

Friday 11 October 2019

Решение разложением по базисным предикатам уравнения побитовой конъюнкции E(15) => (E(35) => E(A)) ≡ 1

Оригинал на новостной ленте ВК Informatics_100


https://vk.com/informatics_100?z=photo-40390768_457276356%2Fwall-40390768_198488

Решение разожением по базисным предикатам ( Елена Мирончик )

E(35) = E(32) v E(2) v E(1)
E(15) = E(12) v E(2) v E(1)
Далее
E(35)^E(15)= (E(32) v E(2) v E(1))^(E(12) v E(2) v E(1))
E(32)^E(12) v E(32)^E(2) v E(32)^E(1) v
v E(2)^E(12) v E(2) v E(2)^E(1) v
v E(1)^E(12) v E(1)^E(2) v E(1)
По закону поглощения
(1) E(35)^E(15) = E(2) v E(1) v E(32)^E(12) = E(3) v E(32)^E(12)
(2)
E(35)^E(15) = E(3) v E(32)^E(8) v E(32)^E(4)


Перейдем к уравнению
E(15)=>(E(35)=>E(A)) ≡ 1
¬E(15) v ¬E(35) v E(A) ≡ 1
¬(E(15)^E(35)) v E(A) ≡ 1
¬(E(3) v E(32)^E(12)) v E(A) ≡ 1
(E(3) v E(32)^E(12))=> E(A) ≡ 1

Поскольку (P v Q)=>C ≡ (P=>C)^(Q=>C)
(E(3)=>E(A))^(E(32)^E(12)=>E(A)) ≡ 1

Следовательно (Елена Мирончик)
(E(3)=>E(A)≡ 1)^(E(32)^E(12)=>E(A)≡ 1)=True
E(3) v E(A)≡ 1)^( ¬E(32) v ¬E(12) v E(A) ≡1)=True

Откуда как минимум
(E(3) => E(A) ≡ 1)^(E(12) => E(A) ≡ 1)=True
**********************************************
A(min) должно содержать все биты 3 и 12 (1111)
**********************************************

То есть A(min) = 15



 

 

Thursday 3 October 2019

Setting up a cross-reference table in 08/2016 approach of Helen Mironchick when moving to a new line of the system of Boolean equations

UPDATE as of 6/10/2109
  I do have to notice that solving System 5 from http://kpolyakov.spb.ru/download/mea-2016-8.pdf  silently does what described down here without focusing attention on predicates (x3x4) and x3^x4  truth and false sets intersections. Actually four sets were obtained and theirs powers have been used to solve System 5. I sincerely apologies for missing this doing original post
END UPDATE

The key place is a detailed description of building a cross-reference table 
when moving to a new line of the system. The chart generation is just a consequence.
First consider system
   (1) F1(x1,y1,z1)=>F2(x2,y2,z2) =1
   (2) F1(x2,y2,z2)=>F2(x3,y3,z3) =1
   (3) F1(x3,y3,z3)=>F2(x4,y4,z4) =1
   (4) F1(x4,y4,z4)=>F2(x5,y5,z5) =1
where F1 and F2 are triple predicates
Denote card(N) the power of set N
Denote n1,n2,m1,m2,s1,s2
    n1=card (falseSet_F2 ∩ falseSet_F1)
    n2=card (falseSet_F2 ∩ truthSet_F1)
    m1=card (truthSet_F2 ∩ falseSet_F1)
    m2=card (truthSet_F2 ∩ truthSet_F1)
    s1=card (falseSet_F1)
    s2=card (truthSet_F1)

Then following 08.2016 diagram would show up

Consider system
(((x1=>y1)=>z1)⊕((z1=>y1)=>x1))=>((x2≡y2)≡z2)=1
(((x2=>y2)=>z2)⊕((z2=>y2)=>x2))=>((x3≡y3)≡z3)=1
(((x3=>y3)=>z3)⊕((z3=>y3)=>x3))=>((x4≡y4)≡z4)=1
(((x4=>y4)=>z4)⊕((z4=>y4)=>x4))=>((x5≡y5)≡z5)=1
(((x5=>y5)=>z5)⊕((z5=>y5)=>x5))=>((x1≡y1)≡z1)=1

Perform two runs. First for system
(((x1=>y1)=>z1)⊕((z1=>y1)=>x1))=>((x2≡y2)≡z2)=1
(((x2=>y2)=>z2)⊕((z2=>y2)=>x2))=>((x3≡y3)≡z3)=1
(((x3=>y3)=>z3)⊕((z3=>y3)=>x3))=>((x4≡y4)≡z4)=1
(((x4=>y4)=>z4)⊕((z4=>y4)=>x4))=>((x5≡y5)≡z5)=1
(((x5=>y5)=>z5)⊕((z5=>y5)=>x5))=>((x1≡y1)≡z1)=0

Starting values for G(x1,y1,z1) are defined by
false triples ((x1≡y1)≡z1)
For 000  G(0,0,0) =0
For 101  G(1,0,1) =0
For 011  G(0,1,1) =1
For 110  G(1,1,0) =1
Thus  G(x1,y1,z1) starts  with 2/2
The result of first run is value G(x5,y5,z5) on line "1". It defines the number 
of false solutions - 1952 , which should be deducted from number of solutions of second system.
Second run :-
(((x1=>y1)=>z1)⊕((z1=>y1)=>x1))=>((x2y2)z2)=1
(((x2=>y2)=>z2)⊕((z2=>y2)=>x2))=>((x3y3)z3)=1
(((x3=>y3)=>z3)⊕((z3=>y3)=>x3))=>((x4y4)z4)=1
(((x4=>y4)=>z4)⊕((z4=>y4)=>x4))=>((x5y5)z5)=1

Set up cross-reference table  && fork 08/2016 diagrams matching requirements
 

     Performing Polyakov's Control
   

    

Tuesday 1 October 2019

Solving the next 23rd problem from inform20190916proba2.pdf via Style 08.2016

The key place is a detailed description of building a cross-reference table 
when moving to a new line of the system. The chart generation is just a consequence.
See also:- 
Setting up a cross-reference table in 08/2016 approach of Helen Mironchick when moving to a new line of the system of Boolean equations
in this post another case with triple predicates and much more complicated 08/2016 chart is considered.
Consider system of Boolean equations. 

(1) F1(x1,y1)≡F2(x2,y2) =1
(2) F1(x2,y2)≡F2(x3,y3) =1
. . . . . . 
(7) F1(x7,y7)≡F2(x8,y8) =1
where F1 and F2 are double predicates

Denote card(N) the power of set N
Denote n1,n2,m1,m2,s1,s2

n1=card (falseSet_F2 ∩ falseSet_F1)
n2=card (falseSet_F2 ∩ truthSet_F1)
m1=card (truthSet_F2 ∩ falseSet_F1)
m2=card (truthSet_F2 ∩ truthSet_F1)
s1=card (falseSet_F1)
s2=card (truthSet_F1)

Then following 08.2016 diagram takes place


For instance consider system
(1) F1(x1,y1)=>F2(x2,y2) =1
(2) F1(x2,y2)=>F2(x3,y3) =1
. . . . . . 
(7) F1(x7,y7)=>F2(x8,y8) =1
where F1 and F2 are double predicates
Then following 08.2016 diagram would take place


Another sample
(1) F1(x1,y1) v F2(x2,y2) =1
(2) F1(x2,y2) v F2(x3,y3) =1
. . . . . . 
(7) F1(x7,y7) v F2(x8,y8) =1
where F1 and F2 are double predicates



Would I consider triple predicates instead of double it wouldn't change excel spreadsheets.
Core logic proposed in the very first rows keeps stay the same.


Now consider system from  inform20190916proba2.pdf



Fork 08.2016 diagram
  




Featured Post

Solution of one USE Informatics system of Boolean equations in 08.2016 style

Original system Orinal system ¬(x1≡x2)v¬(x1≡x3)^(x2≡x3)=1 ¬(x3≡x4)v¬(x3≡x5)^(x4≡x5)=1 ¬(x5≡x6)v¬(x5≡x7)^(x6≡x7)=1 ¬(x7≡x8)v¬(x7≡x9...