Convert system to equivalent
(x1 =>¬y1) => (x2 ≡ ¬y2) =1 ≡ (¬x1 v ¬y1) => (x2⊕y2) =1
(¬x1 v ¬y1) => (x2⊕y2) =1 ≡ ¬(x1^y1) => (x2⊕y2) =1
¬(x1^y1) => (x2⊕y2) =1 ≡ (x1^y1) v (x2⊕y2)=1
Conversion is done
New system looks like
(x1^y1) v (x2⊕y2)=1
(x2^y2) v (x3⊕y3)=1
(x3^y3) v (x4⊕y4)=1
(x4^y4) v (x5⊕y5)=1
(x5^y5) v (x6⊕y6)=1
The core block to replicate per 08/2016 technique
Now fork 08/2016 diagram
No comments:
Post a Comment