Original systems
(x1^y1^z1≡x3^y3^z3)=>(x2 v y2 v z2)=1
(x2^y2^z2≡x4^y4^z4)=>(x3 v y3 v z3)=1
(x3^y3^z3≡x5^y5^z5)=>(x4 v y4 v z4)=1
(x1^y1^z1⊕x3^y3^z3)=>(x2 v y2 v z2)=1
(x2^y2^z2⊕x4^y4^z4)=>(x3 v y3 v z3)=1
(x3^y3^z3⊕x5^y5^z5)=>(x4 v y4 v z4)=1
(x1^y1^z1⊕x3^y3^z3)=>((x2=>y2)=>z2)=1 (3/5)
(x2^y2^z2⊕x4^y4^z4)=>((x3=>y3)=>z3)=1 (3/5)
(x3^y3^z3⊕x5^y5^z5)=>((x4=>y4)=>z4)=1 (3/5)
(x2^y2^z2≡x4^y4^z4)=>((x3=>y3)=>z3)=1 (3/5)
(x1^y1^z1≡x3^y3^z3)=>(x2 v y2 v z2)=1
(x2^y2^z2≡x4^y4^z4)=>(x3 v y3 v z3)=1
(x3^y3^z3≡x5^y5^z5)=>(x4 v y4 v z4)=1
(x1^y1^z1⊕x3^y3^z3)=>(x2 v y2 v z2)=1
(x2^y2^z2⊕x4^y4^z4)=>(x3 v y3 v z3)=1
(x3^y3^z3⊕x5^y5^z5)=>(x4 v y4 v z4)=1
Second diagram forced to work ( for XOR update of original one )
Mironchick ( for 2 variables case )(x1^y1^z1⊕x3^y3^z3)=>((x2=>y2)=>z2)=1 (3/5)
(x2^y2^z2⊕x4^y4^z4)=>((x3=>y3)=>z3)=1 (3/5)
(x3^y3^z3⊕x5^y5^z5)=>((x4=>y4)=>z4)=1 (3/5)
(x1^y1^z1≡x3^y3^z3)=>((x2=>y2)=>z2)=1 (3/5)
(x3^y3^z3≡x5^y5^z5)=>((x4=>y4)=>z4)=1 (3/5)
No comments:
Post a Comment