Monday, 9 September 2019

Verification of Helen Mironchick recent idea based on the logical product of bit triples on several Boolean systems having three variables as of 09/09/2019

Original systems 

(x1^y1^z1≡x3^y3^z3)=>(x2 v y2 v z2)=1
(x2^y2^z2≡x4^y4^z4)=>(x3 v y3 v z3)=1
(x3^y3^z3≡x5^y5^z5)=>(x4 v y4 v z4)=1



(x1^y1^z1⊕x3^y3^z3)=>(x2 v y2 v z2)=1
(x2^y2^z2⊕x4^y4^z4)=>(x3 v y3 v z3)=1
(x3^y3^z3⊕x5^y5^z5)=>(x4 v y4 v z4)=1

Second diagram forced to work ( for XOR update of original one )

    At this point we start testing with implication target different from considered by Helen 
    Mironchick ( for 2 variables case )
    (x1^y1^z1⊕x3^y3^z3)=>((x2=>y2)=>z2)=1      (3/5)
    (x2^y2^z2⊕x4^y4^z4)=>((x3=>y3)=>z3)=1      (3/5)
    (x3^y3^z3⊕x5^y5^z5)=>((x4=>y4)=>z4)=1      (3/5)

      (x1^y1^z1x3^y3^z3)=>((x2=>y2)=>z2)=1      (3/5)
      (x2^y2^z2x4^y4^z4)=>((x3=>y3)=>z3)=1      (3/5)       
      (x3^y3^z3x5^y5^z5)=>((x4=>y4)=>z4)=1      (3/5)    
    (x1^y1^z1⊕x3^y3^z3)=>((x2y2)z2)=1      (4/4)
    (x2^y2^z2⊕x4^y4^z4)=>((x3y3)z3)=1      (4/4)
    (x3^y3^z3⊕x5^y5^z5)=>((x4y4)z4)=1      (4/4)


No comments:

Post a Comment

Featured Post

Solution of one USE Informatics system of Boolean equations in 08.2016 style

Original system Orinal system ¬(x1≡x2)v¬(x1≡x3)^(x2≡x3)=1 ¬(x3≡x4)v¬(x3≡x5)^(x4≡x5)=1 ¬(x5≡x6)v¬(x5≡x7)^(x6≡x7)=1 ¬(x7≡x8)v¬(x7≡x9...